Die Schwalbe

1 problem(s) found in 1297 milliseconds (displaying 1 problem(s)). [PROBID='P1388822'] [download as LaTeX]

1 - P1388822
Nicolas Dupont
Michel Caillaud

Die Schwalbe 2018
Jubilé T.Brand & B.Gräfrath 60
1er Recommandé Spécial
P1388822
(16+16)
BP in 29.5
1. e3 a5 2. La6 b5 3. Sh3 Lb7 4. Tf1 Lf3 5. e4 Lg4 6. f3 g6 7. Tf2 Lg7 8. Te2 Ld4 9. Te3 Lb6 10. Td3 c5 11. Td6 Dc7 12. Tc6 Df4 13. Tc7 Sc6 14. Tb7 0-0-0 15. Tc7++ Kb8 16. Tc8+ Ka7 17. Tb8 Tc8 18. Sf2 Tc7 19. Tf8 f6 20. Tf7 h5 21. Th7 h4 22. Th5 a4 23. Td5 Th5 24. Td3 Td5 25. Te3 Td3 26. Te2 Te3 27. d3 Sh6 28. Kd2 Sf5 29. Te1 Sfd4 30. Th1
play all play one stop play next play all
Henrik Juel: The award in Die Schwalbe, Heft 296, April 2019, p.80 has Pa4 on a5 and Ph4 on h3
This entry seems to come from a french source, where the authors may have made the change, which probably makes little difference
It should be marked as a version (2021-04-21)
Henrik Juel: Counting the black moves (from a8, b8, etc.) yields
2+1+3+2+3+3+3+4 + 2+1+1+1+1+2 = 29, including a long castling
Only 7 white moves are visible, but this is increased to 8, because White must move e2-e3-e5 to make room for [Lc8]
Where are the remaining 22 white moves? They are used for an incredible record round-trip by Th1, who must screen on b7 to permit the castling
1.e3 a5 2.La6 b5 3.Sh3 Lb7 4.Tf1 Lf3 5.e4 Lg4 6.f3 g6 7.Tf2 Lg7 8.Tf3 Ld4 9.Te3 Lb6 10.Td3 c5 11.Td6 Dc7 12.Tc6 Df4 13.Tc7 Sc6 14.Tb7 0-0-0 15.Tc7++ Kb8 16.Tc8+ Ka7 17.Tb8 Tc8 18.Sf2 Tc7 19.Tf8 f7 20.Tf7 h5 21.Th7 h4 22.Th5 a4 23.Td5 Th5 24.Td3 Td5 25.Te3 Td3 26.Te2 Te3 27.d3 Sh6 28.Ke2 Sf5 29.Te1 Sfd4 30.Th1 (2021-04-21)
Henrik Juel: tiny typos:
White must move e2-e3-e4, not -e5
8.Te2, not Tf2 (2021-04-21)
comment
Keywords: Unique Proof Game, Capture-free, Pure Round Trip (T22)
Genre: Retro
FEN: 8/k1rpp3/Bbn2pp1/1pp5/p2nPqbp/3PrP2/PPPK1NPP/RNBQ3R
Input: A.Buchanan, 2021-04-21
Last update: A.Buchanan, 2021-04-21 more...
Show statistic for complete result. Show search result faster by using ids.

https://pdb.dieschwalbe.de/search.jsp?expression=PROBID%3D%27P1388822%27

The problems of this query have been registered by the following contributors:

A.Buchanan (1)